2024-08-29 | 阅读全文

2024-08-29 | 阅读全文

为 Litchi 添加配置功能

2024-08-28 | 阅读全文

A Story About Litchi

2024-08-24 | 阅读全文

Schmidt and Google

2024-08-17 | 猪猪可能到死都以为,自己还不够努力…… 阅读全文

GGML PCA

2024-06-23 | 主成分分析(principal components analysis)是一类非常常见的算法,广泛应用于各种需要信息压缩的场景。虽然《深度学习》一书称之为“简单的机器学习算法”,但是PCA通常可以通过确定的数值算法实现。 阅读全文

Tensor Dancer 项目的开发环境配置

2024-06-14 | 我准备围绕几个基础的算法工具,编写一系列算法,最终形成一个高阶的算法库,并提供相关的 PostgreSQL 插件,这里记录一下开发环境配置 阅读全文

在 PG 中支持矩阵乘法

2024-06-14 | Tensor Dancer 项目核心目标之一,是在 PostgreSQL 中提供张量计算能力。这里我们从一个最简单的需求开始:支持矩阵乘法,使我们可以对 pgvector 的向量使用 PCA 矩阵降维。 阅读全文

一次不成功的 pull request

2024-06-05 | 或许,解决ollama嵌入向量的降维问题,已经没有简单的路可以走了 阅读全文

Java Llama CPP On MacOS

2024-05-15 | 阅读全文

个人版 AI 辅助系统的尝试

2023-12-16 | The Old Dwarf Forged A New Toy In His Mountain Workshop 阅读全文

Arg Parser

2023-12-11 | A simple arguments parser base special rules and Jaskell style 阅读全文
Tags: java jaskell


为 Java 编写的 Try 和 Tuple 类型

2023-12-02 | Java 传统上使用 try catch finally 关键字管理异常。这种机制久经考验。我参考 scala 的 Try 类型,编写了一组适用 java 的工具。 阅读全文

Croupier

2023-04-01 | Random select utils 阅读全文

《数据可视化基础》读后感

2022-12-05 | 这本书分门别类的介绍了各种主要的图表类型和对应的适用场景,给出了各种好和不好的设计示范。 阅读全文
Tags: tech data


《通向实在之路》

2022-11-13 | 近一段时间,我的各个开源项目都没有什么提交,在这段时间,我读完了《通向实在之路——宇宙法则的完全指南》。 阅读全文
Tags: math


Common Lang3 Bridge 发布第一个版本

2022-09-14 | 就在今天,我发布了 Apache Commons Lang Bridge 的第一个版本 阅读全文

Apache Commons Lang3 Bridge 未(完全)实现的内容

2022-09-05 | 实现这个封装库时,并非无条件的照搬,而是做了一定的取舍。 阅读全文

Jaskell Dotty

2021-11-27 | 面向下一代 Scala 的 Jaskell 实现 阅读全文

Jaskell Core 0.3

2020-05-21 | 我和代数组合子的十年 阅读全文
Tags: Scala Java Parsec


MAC OS 使用技巧二则

2013-10-26 | NTFS访问,磁盘空间丢失,是我在使用 Mac 时遇到的问题,也是 MAC 用户常见的问题。不过当时因为没有及时记录,现在的印象有些模糊了。特别是一些原理和名词未必准确。 阅读全文
Tags: tech OSX


搭建 SAE 本地开发环境

2013-10-09 | 现在在本地,特别是*nix系统下搭建SAE开发环境,已经是一个相当方便的事情。 阅读全文
Tags: tech web python


LVM Extend Or Reduce

2013-08-26 | LVM 容量伸缩控制可以热调整,而这只依赖很简单的几个指令 阅读全文

昔年旧日

2013-08-23 | 一桩旧事 阅读全文
Tags: live other


《iOS 编程(第三版)》书评

2013-07-24 | 这本书比我以前读过的 step by step 的读物更深入一些,而不失易于学习的优点。 阅读全文

WWDC 和Apple新一代操作系统族

2013-06-17 | WWDC 2013,后 Jobs 时代的标志典礼 阅读全文
Tags: tech iOS OSX


诚聘全职漫画助理【珠海】

2013-04-08 | 阅读全文
Tags: 招聘


大脚文件下载链接错误

2013-03-11 |
````
阅读全文
Tags: tech


帮朋友发个招聘启事(优逸科技)

2013-03-07 | 优逸科技招聘高级软件开发人才。 阅读全文
Tags: 招聘


如何给 Jekyll 的 Post 设定附图

2013-02-27 | Jeklly 站点的页面可以附加元信息,用这种方法可以很方便的给Post设定附图。
````
阅读全文
Tags: tech web jekyll


我用 Jekyll 重构了 Dwarf Artisan

2013-02-25 | 最初紧急搭建的公司网站已经越来越难以满足要求,我重构了 Dwarf Artisan 的网站。 阅读全文
Tags: tech web jekyll


我的键盘体验

2013-02-22 | 我个人关于键盘的选择和使用习惯的体验。 阅读全文
Tags: 其它


每天都被老婆打

2013-02-17 | 每天都被老婆打什么的…才没有呢!只是单纯的秀恩爱,哼! 阅读全文
Tags: live family joke


Python TDD IN EMACS

2013-02-17 | Emacs有非常强大的扩展能力,可以用它和iPython组合成为Python的TDD式开发环境。 阅读全文

How To Create a HTTP PUT use Python

2013-02-17 | 旧文搬家,用Python构造HTTP PUT请求的代码 阅读全文
Tags: python web


Notes of Write Scheme 48 Hours

2013-02-13 | 这是一份学习笔记,《48 Hours》通过开发一个 Scheme 解释器介绍了 Haskell 语言 阅读全文

About

2013-02-12 | 关于这个坑 阅读全文
Tags: 关于 其它


How To Read Mathematics 如何阅读数学

2013-02-08 | 未经启蒙的话,数学是门无法阅读又无法理解的语言 阅读全文

为什么会有这个坑

2013-02-07 | 阅读全文
Tags: 其它

  • 个人版 AI 辅助系统的尝试

    在 CSDN 的时候,我就一直想要有自己的 AI 工作环境。我们组只有一台高配的办公服务器,用于训练模型,分析数据。通常来说这台机器都很忙。如果想要 做一些研究工作或试验,资源就有点紧张了。而我自己的工作机,虽然是一台买了只有四五年的高配 MacBook Pro,但是做 AI 已经不太够用。即使训练一个非常 朴素的文本分类器,也要花费太多时间。那几年我偏好用传统的算法而非 AI 工具解决问题,其实也有这个原因。并非我不能驾驭 AI 技术,只是因地制宜而已。 何况团队里的年轻人们对 AI 相关工作做的非常好,我更关注那些更需要有人站出来解决的东西。 [Read More]
  • Arg Parser

    前几天我写了一个简单的词法分析器项目:https://github.com/MarchLiu/oliva/tree/main/lora-data-generator 。 通过词法分析快速生成 lora 训练集。在这个过程中,我需要通过命令行参数给这个 java 程序传递一些参数。 [Read More]
    Tags:
  • Croupier

    随机、优先与权重 动机 除了汇编语言这样的另类,常规的编程语言几乎都提供了按平均概率生成整数或者浮点数的标准库。这也是应用开发中非常基本的功能。不过,有时候我们需要一些关于随机性的更复杂的功能。 这种复杂性主要来自两个方面:非平均的随机分布和随机结果的使用方式。 非平均概率 标准库的随机算法,通常都是以一个平均概率的,生成(0,1)之间浮点数的函数,或者以一个生成[0, MAX_INT)区间的整数值的方法为基础,构造相关的算法(Java标准库的Random类型,nextInt 和 nextDouble是分别实现的,互不依赖),这就使得相关的随机数生成总是在已知区间内的平均概率。有时候我们会希望以非平均概率生成随机数。例如我手上有一个推荐系统,在我们从数据集中抽取推荐内容发送到客户端时,并不希望每个内容都有平均的被选择机会,肯定是希望权重更高,更靠前的内容,有更大的几率被选中。 一种常见的方法是计算出每个内容的权重——weight、rank、score或者其它什么名字,整数或者浮点数——然后根据这个权重去选择内容。但其实严格的按权重计算概率是一个相对比较奢侈的做法,很多时候我们未必需要一个严格按照权重分布的随机数,而是仅仅要求一个有序列表中的元素,排在更前面的元素总是有更大的几率被选中——这正是推荐系统常见的需求。 随机数的使用 很奇怪,C++ 的 STL 都提供了 random_shuffle 这样的针对集合的随机算法,但是Java没有,不但Java的标准库没有,scala的标准库,甚至 Apache Commons,都没有从一个容器中随机选择若干元素的方法,Apache Commons 的 RandomUtils 中包含 nextBoolean、nextBytes这样的随机内容构造,但是就是没有从一个有限集合中做随机选择的支持。但是对我的日常工作来说,随机数一个非常重要的用途,就是利用随机行为,生成一个数据列表的子集。有时候我需要一个从固定集合中反复采样,有时候我希望做一个随机分割,还有时候,我还要处理只读和可变的容器。 针对这两个方面的缺失,我回顾了这些年来遇到的各种相关问题,在 Jaskell Core 和 Jaskell Java 8 中各自加入了一组随机工具,用于对 Java 的 List 和 Scala 的 Seq、ListBuffer 做随机选择操作。 实现 随机算法和选择算法分离 [Read More]
  • 《数据可视化基础》读后感

    《数据可视化基础》读后感 这本书比我预想的读起来要轻松的多。全书没有任何编程或者数学性质的东西,但是对我很有价值,补充了我的知识中缺失的一片拼图。 这本书分门别类的介绍了各种主要的图表类型和对应的适用场景,给出了各种好和不好的设计示范。 对我来说,用pandas或echart或r画图,并没有特别大的区别,顶多就是花几天学一学,查一查手册。但是图表背后是统计领域的行业知识,很多图表,在读这本书之前,我并不知道它们的存在,或者并不知道如何才能用好。 例如颜色和灰度的关系,以前,我只是模糊的有些感觉,会无意识的尝试一些特定的颜色组合,但是从来没有站在色弱或者色盲人士的角度,认真的去认识这个问题。在书中,清晰的给出了如何普适广大受众的颜色设计。 再例如,对于多维图表的设计,我以前也只是做一些肤浅的尝试,而这本书中,有非常细致的介绍,特别是如何保障图表在脱离电脑,印刷到纸上后,仍然有足够的表达能力。 全书正文三百多页,在我近期阅读的书籍中,算得上是一个小本子,没有公式,没有代码(随书源码使用 R 语言, ggplot2包,可以另行下载)。读起来也没什么负担,但是普适于任何工作或学习与数据相关的人士。当然,真正完成工作,我们需要具体的技术工具,需要切实的统计知识。但是对可视化的了解,也是必不可少的一部分,这本书,可以帮助我们有的放矢。
    Tags: